# Raghu Dharahas Reddy Kotla

 J+1 240-610-7471
 ■ raghudharahas@gmail.com
 in/raghudharahas
 ♠ Raghudharahas
 ♦ raghudharahas.com

 College Park, MD 20740

#### SUMMARY

- Robotics Software Engineer with **3**+ **years** of experience developing autonomous systems, **real-time perception pipelines**, and AI-driven **decision-making** for agriculture, healthcare, and HRI applications.
- Advanced proficiency in ROS2, C++, Python, and computer vision (OpenCV, YOLO), with deployments on TurtleBot3/4, UR10 manipulators, and custom robotic platforms.
- Skilled in SLAM, motion planning (A\*, RRT\*, PRM), multi-sensor fusion, and deep learning (PyTorch, TensorFlow), enabling scalable solutions for navigation, mapping, and object detection.
- Strong background in software engineering practices: containerization (**Docker**), version control (**Git**), **CI/CD**, and modular system design for production-ready robotics.

## TECHNICAL SKILLS

Programming Languages: Python, C++, MATLAB, C#, SQL

Robotics & AI Frameworks: ROS, ROS2, Gazebo, RViz, Nav2, OpenCV, PyTorch, TensorFlow

Machine Learning & AI: Deep Learning, Neural Networks, Computer Vision, Natural Language Processing(NLP)

CAD & Simulation Tools: SolidWorks, ANSYS, CURA, PTC Creo

Development Tools & Platforms: Ubuntu/Linux, Windows, GitHub, Docker, VS Code, PyCharm, Agile/Scrum

#### WORK EXPERIENCE

## University of Maryland

Sep 2025 - Present

Graduate Teaching Assistant, ENMT 473: Motion Planning for Autonomous Systems College Park, MD

- Lead weekly labs on sensor-based planning, sampling/decomposition methods (PRM, RRT/RRT\*), trajectory optimization, planning under uncertainty, and multi-robot coordination.
- Designed hands-on assignments that bridge theory to implementation using Python, NumPy, OpenCV; emphasize algorithmic rigor, data structures, and reproducible workflows.
- Mentored a cohort of graduate students (office hours, code reviews), improving debugging discipline and solution quality; standardized rubrics to ensure consistent, fair evaluation.

## AgriEtern Technologies Pvt Ltd.

 $\mathbf{Aug}\ \mathbf{2020} - \mathbf{Jul}\ \mathbf{2023}$ 

Founder & Robotics Engineer

Hyderabad, India

- Designed and deployed a ROS2-based computer vision system using OpenCV, NumPy, Pandas, and Raspberry Pi for autonomous crop health monitoring, reducing pesticide usage by 50% and improving yields by 25%.
- Developed and optimized lightweight CNN models for fruit ripeness detection, yield forecasting, and price prediction, cutting post-harvest losses by 25%.
- Designed and containerized an **IoT** farm management dashboard integrating **edge AI devices** for smart irrigation, real-time alerts, and predictive analytics.
- Led a 10-member cross-functional team through 3 field deployments, overseeing robotics R&D, hardware-software integration, and reliability testing.
- Founded and scaled the "FutureKrop" brand, launching last-mile delivery systems (dark store + retail outlet) and expanding direct-to-consumer sales reach by 40%.

# Institute For Industrial Interdisciplinary Research And Product Development Mar 2020 – Jul 2020 Robotics Research Assistant Intern Hyderabad, India

- Designed and developed an autonomous hand-sanitizer robot using **Raspberry Pi**, **ultrasonic sensors**, and embedded **Python** control during the COVID-19 pandemic, including **CAD design**, **3D printed prototypes**, and actuator integration.
- Performed hardware bring-up, calibration, and troubleshooting across multiple robotics projects, ensuring reliable performance of power circuits and mechanical subsystems.

# Brain Lesion Detection and Robotic Path Planning in Neurosurgical Applications

- Conducted a comprehensive survey of 26 peer-reviewed studies on AI-driven lesion segmentation and **robotic path** planning for epilepsy and autoimmune encephalitis surgery.
- Proposed a structured taxonomy covering CNN, transformer, and self-supervised models for lesion detection, and robotic planners such as MDP-LQR-RRT\*, tractography-aware, and bio-inspired methods.
- Evaluated toolchains like ROS2, MONAI, and 3D Slicer for clinical readiness, highlighting their integration challenges and potential for real-time, explainable neurosurgical systems.

# Real-Time Visual Perception and Navigation on TurtleBot4

- Designed and implemented a ROS2-based perception stack using only an onboard RGB-D camera, integrating
   ArUco marker tracking, YOLOv8n stop sign detection, optical flow for dynamic obstacle avoidance, and real-time
   3D reconstruction with 6D pose estimation for enhanced object localization and navigation using OpenCV and
   Open3D.
- Deployed and tested the full system on physical TurtleBot4 hardware, enabling real-time autonomous navigation and visual feedback without LiDAR; validated performance in Gazebo simulation and real-world lab environments.

# Ashwatthama Lunar Light Utility Vehicle (LLUV)

- Designed a six-wheeled lunar rover featuring a **3-bogie suspension** system, **hybrid Ackermann-Crab steering**, and a **6-DOF robotic arm** for payload handling up to **1000 kg**.
- Developed energy-efficient systems with solar-powered batteries enabling 8-hour continuous operation, and implemented SLAM-based navigation for autonomous obstacle avoidance.
- Conducted stress simulations and optimized rover components for extreme lunar conditions, including 30° inclines, 30 cm obstacles, and thermal management.

#### AURA: AI-Powered Robotic Assistant for Autoimmune Care

- Designed an **operator-in-the-loop rehabilitation assistant**, enabling safe interaction between patients and robot through **human-supervised control and adaptive feedback loops**.
- Integrated multimodal data sources (EEG sensors, wearables) into real-time decision pipelines, laying groundwork for telepresence-enabled therapy.
- Proposed human-robot interfaces that combined autonomy with human oversight, aligned with human-in-the-loop safety principles.

# Modeling and Gazebo Simulation of Agrobot for Fruit Picking

- Designed an agricultural robot with LiDAR and RGB camera modules, implementing SLAM for real-time mapping and autonomous navigation.
- Integrated a UR10 manipulator with forward and inverse kinematics for precise fruit-picking tasks.
- Developed **OpenCV**-based fruit ripeness detection pipeline in **ROS2 Galactic** using **Python**, optimizing harvesting efficiency in **Gazebo** simulation.

#### **EDUCATION**

#### University of Maryland, College Park, USA

Master of Engineering in Robotics

Dec 2025 (Expected)

GPA: 3.7/4.0

Relevant Coursework: Robot Modeling & Controls (kinematics, dynamics, PID, impedance/admittance control), Rehabilitation Robotics (compliance control, HRI, actuator modeling), Perception & Planning (SLAM, motion planning, trajectory optimization), AI & Deep Learning (CNNs, Transformers, reinforcement learning)

Jawaharlal Nehru Technological University, Hyderabad, India Bachelor of Technology in Mechanical Engineering

Aug 2015 – Aug 2019

GPA: 8.1/10